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Supplementary Figure S1. ESC-derived MSC (ESC-MSC) were compared to their origin ESC as
well as to bone marrow-derived MSC (BM-MSC) with two high throughput techniques: RNA deep
sequencing (RNA) and LC-MS/MS (PROT). (a) Representative microscope images of ESC, ESC-MSC
and BM-MSC for the three experiments. ESC-MSC in the study were derived from three independent
differentiation experiments. BM-MSC were derived from four donors, with three of them used in
proteomics. Details of the BM-MSC used; 40y/m (StemCell, MSC-001F, lot#BM2893), 39/m (Lonza,
PT2505, lot#1F3422), 27y/m (Lonza, PT2505, lot#318006), 20y/m (only in RNA-seq, Lonza, PT2505,
lot#8F3520). (b) Pipelines of RNA and PROT.
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Supplementary Figure S2. Significant differentially expressed (a) genes and (b) isoforms (FDR < 0.05)
based on RNA-seq for the following comparisons: ESC-MSC vs ESC, BM-MSC vs ESC and BM-MSC vs
ESC-MSC. Plots were derived with the CummeRbund package. (c) Heatmap of ESC- and MSC-specific
marker genes.
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Supplementary Figure S3. Comparison of RNA-seq data with other MSC study'. Both data sets
were analyzed by the same bioinformatics pipeline (see materials and methods section).
Dendrograms on (a) replicates and (b) groups show clear separation of ESC from MSC (placenta-derived
MSC (PL_MSC), bone marrow-derived MSC (BM_MSC), ESC-derived MSC (ESC_MSC)). In both
studies, fetal and adult MSC were compared. In our study: ESC-MSC vs BM-MSC (_A), by Roson-Burgo
et al.. PL-MSC vs BM-MSC (_0O). (c) Distance matrix generated by CummeRbund. (d) Venn diagram of
up-regulated proteins (FDR < 0.05) in different MSC populations when compared to ESC. (e) Gene
counts of all pairwise comparisons (FDR < 0.05).
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Supplementary Figure S4. Quantitative proteomics combined with SILAC labeling on ESC (E),
ESC-MSC (EM) and BM-MSC (BM). (a) SILAC labeling schedule. SILAC labeling accounting for label
swapping between ESC, ESC-MSC and BM-MSC. (b) As an example, SILAC-labeled cytosolic (CYT)
protein extracts for E, EM and BM are shown for all three experiments. Protein extracts (10ug per lane)
were separated by 4-12% SDS-PAGE. (c) Representative SDS-PAGE show cytosolic (CYT), nuclear
(NUC) and chromatin-bound (CH) proteins for E, EM and BM. 10ug protein per lane was loaded. (d)
Organelle markers confirm enrichment efficiency. Western blot analysis for three organelle markers
(MEK1/2 for CYT, LSD1 for NUC/CH and H2AZ for CH) confirms protein extraction efficiency. 10 pg
protein was loaded per lane. (e) Same markers were also measured by mass spectrometry presented as
non-normalized intensity values. (f) Venn diagram of LC-MS/MS SILAC-quantified proteins per replicate.
(g9) Heatmap of pluripotency-associated factors (ESC-specific) and MSC-specific proteins measured by
mass spectrometry.
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Supplementary Figure S5. Comparing presented proteomics data set with other studies. (a)
Comparison with the human proteome maps®” at protein and peptide level. (b) Comparison with the
largest proteomics data sets available for ESC*® at protein level. (c) Comparison with the largest
proteomics data set available for MSC®.
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Supplementary Figure S6. Enrichment analysis for GOBP terms filtered for “development”.
Comparing MSC vs ESC with genes/proteins (a) up-regulated in MSC and (b) up-regulated in ESC.
Enrichment was performed on RNA-seq (left panels) and proteomics data (right panels) using the comics
package. Bar charts represent the most significant top 20 terms for each cell type sorted by the mean of —

logyo p values.



Supplementary Table S3
The enrichment files can be downloaded using the following link:

https://bitbucket.org/billingetal2015c/disseminatebilling2015/downloads
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